E2.5 Signals \& Linear Systems

Tutorial Sheet 5 - Laplace Transform \& Frequency Response

(Lectures 7-9)
1.* Using Laplace transform, solve the following differential equations:
a) $\quad\left(D^{2}+3 D+2\right) y(t)=D f(t) \quad$ if $\quad y\left(0^{-}\right)=\dot{y}\left(0^{-}\right)=0$ and $f(t)=u(t)$
b) $\quad\left(D^{2}+4 D+4\right) y(t)=(D+1) f(t) \quad$ if $\quad y\left(0^{-}\right)=2, \dot{y}\left(0^{-}\right)=1$ and $f(t)=e^{-t} u(t)$
c) $\quad\left(D^{2}+6 D+25\right) y(t)=(D+2) f(t) \quad$ if $\quad y\left(0^{-}\right)=\dot{y}\left(0^{-}\right)=1$ and $f(t)=25 u(t)$.
2.* For each of the system described by the following differential equations, find the system transfer function.
a) $\frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+24 y(t)=5 \frac{d f}{d t}+3 f(t)$
b) $\frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}-11 \frac{d y}{d t}+6 y(t)=3 \frac{d^{2} f}{d t^{2}}+7 \frac{d f}{d t}+5 f(t)$
c) $\frac{d^{4} y}{d t^{4}}+4 \frac{d y}{d t}=3 \frac{d f}{d t}+2 f(t)$.
3.** For a system with transfer function

$$
H(s)=\frac{s+5}{s^{2}+5 s+6}
$$

a) Find the zero-state response if the input $f(t)$ is
(i) $e^{-4 t} u(t)$
(ii) $e^{-3 t} u(t)$
(iii) $e^{-4(t-5)} u(t-5)$
b) For this system write the differential equation relating the output $y(t)$ to the input $f(t)$.
4.** For the circuit shown in Figure Q4, the switch is in open position for a long time before $t=0$, when it is closed instantaneously.
a) Write loop equations in time domain for $\mathrm{t} \geq 0$.
b) Solve for $y_{1}(t)$ and $y_{2}(t)$ by taking the Laplace transform of loop equations found in part a).

Fig. Q4
5.** The switch in the circuit of Fig. Q5 is closed for a long time and then opened instantaneously at $\mathrm{t}=0$. Find and sketch the current $y(t)$.

Fig. Q5
6.** For the second-order op amp circuit shown in Fig. Q6, show that the transfer function $H(s)$ relating the output voltage $v_{o}(t)$ to the input voltage $f(t)$ is given by

$$
H(s)=\frac{-s}{s^{2}+8 s+12} .
$$

Fig. Q6
7.* Using the initial and final value theorems, find the initial and final values of the zero-state response of a system with the transfer function

$$
H(s)=\frac{6 s^{2}+3 s+10}{2 s^{2}+6 s+5}
$$

and the input is
a) $\quad u(t)$
b) $\quad e^{-t} u(t)$.
8.** For a LTI system described by the transfer function

$$
H(s)=\frac{s+3}{(s+2)^{2}}
$$

Find the system response to the following inputs:
a) $\cos \left(2 t+60^{\circ}\right)$
b) $\quad \sin \left(3 t-45^{\circ}\right)$
c) $e^{j 3 t}$
9.** Using graphical method, draw a rough sketch of the amplitude and phase response of the LTI system described by the transfer function

$$
H(s)=\frac{s^{2}-2 s+50}{s^{2}+2 s+50}=\frac{(s-1-j 7)(s-1+j 7)}{(s+1-j 7)(s+1+j 7)}
$$

10.*** Using graphical method, draw a rough sketch of the amplitude and phase response of LTI systems whose polezero plots are shown in Fig. Q10(a) \& (b).

Fig. Q10

